Problem Sheet 8

Problem 1

Let $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$be a Dirichlet character and $K \subseteq \mathbb{Q}\left(\zeta_{N}\right)$ the fixed field of its kernel. Prove that $\chi(-1)=1$ if and only if K is a totally real field. The latter meaning that for every $\nu: K \rightarrow \mathbb{C}$ one has $\nu(K) \subseteq \mathbb{R}$.

Problem 2

(a) Let $a_{n}, b_{n} \in \mathbb{C}$ be two sequences of complex numbers and for $m \leq k, m \leq m^{\prime}$ put

$$
A_{m, k}=\sum_{n=m}^{k} a_{n} \text { and } S_{m, m^{\prime}}=\sum_{n=m}^{m^{\prime}} a_{n} b_{n}
$$

Prove

$$
S_{m, m^{\prime}}=\sum_{n=m}^{m^{\prime}-1} A_{m, n}\left(b_{n}-b_{n+1}\right)+A_{m, m^{\prime}} b_{m^{\prime}}
$$

(b) Let $0<\alpha<\beta$ real numbers and let $z=x+i y \in \mathbb{C}, x, y \in \mathbb{R}, x>0$. Then

$$
\left|e^{-\alpha z}-e^{-\beta z}\right| \leq\left|\frac{z}{x}\right|\left(e^{-\alpha x}-e^{-\beta x}\right)
$$

Hint: Write $e^{-\alpha z}-e^{-\beta z}=z \int_{\alpha}^{\beta} e^{-t z} d t$.
(c) Let $f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}, a_{n} \in \mathbb{C}$, be a Dirichlet series. Prove that if f converges for some $s_{0} \in \mathbb{C}$, then f converges locally uniformly on $\left\{s \in \mathbb{C} \mid \operatorname{Re}(s)>\operatorname{Re}\left(s_{0}\right)\right\}$.

Problem 3

Let A be a subset of rational primes. If there exists a number $\rho \in[0,1]$ such that

$$
\sum_{p \in A} \frac{1}{p^{s}} \sim \rho \log \frac{1}{s-1} \text { for } s \text { real and } s \rightarrow 1^{+}
$$

(i.e. s approaches 1 along the real line from the right), then we say that A has Dirichlet density ρ. Compute the Dirichlet density for

$$
A_{n}:=\{p \mid 2 \text { is an } n \text {th power } \bmod p\}
$$

and $n=2,3$.
Hint for $n=3$: Consider the Dedekind ζ-function for both $\mathbb{Q}(\sqrt[3]{2})$ and its Galois closure.

Problem 4

More intuitive than the Dirichlet density is the so-called natural density and we aim to show that the latter is also a former, if exists. Let A be a subset of primes. For $x>0$, denote by $\pi(x)$ the number of all primes less than x, and by $\pi_{A}(x)$ the number of primes in A less than x. The natural density of A is defined as the limit

$$
\rho:=\lim _{x \rightarrow \infty} \frac{\pi_{A}(x)}{\pi(x)}
$$

whenever it exists.
(a) Show that

$$
\sum_{p \in A} \frac{1}{p^{s}}-\rho \sum_{p} \frac{1}{p^{s}}=\sum_{n=1}^{\infty}\left(\pi_{A}(n)-\rho \pi(n)\right)\left(\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\right)
$$

Hint: Use Exercise 2, Part (a)
(b) For every $\varepsilon>0$, there exists $N>0$ such that $\left|\pi_{A}(n)-\rho \pi(n)\right| \leq \varepsilon \pi(n)$ for all $n>N$. Use this to prove that for any $\varepsilon^{\prime}>0$, there exists $\delta>0$ such that

$$
\left|\sum_{p \in A} \frac{1}{p^{s}}-\rho \sum_{p} \frac{1}{p^{s}}\right| \leq \varepsilon^{\prime} \sum_{p} \frac{1}{p^{s}}
$$

whenever $1<s<1+\delta$. Conclude that A has Dirichlet density ρ.

